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In the paper the linear underdetermined system of a special type is considered. Sys-

tems of this type appear in non-homogeneous network flow programming problems in the form

of systems of constraints and can be characterized as systems with a large sparse submatrix

representing the embedded network structure. A direct method for finding solutions of the

system is developed. The algorithm is based on the theoretic-graph specificities for the struc-

ture of the support and properties of the basis of a solution space of a homogeneous system.

One of the key steps is decomposition of the system. A simple example is regarded at the end

of the paper.
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1. Introduction

The work on this paper was motivated, mainly, by the analysis of prob-
lems of non-homogeneous network flow optimization on large data files [1]-[3],
[5]-[7]. Our main goal was to develop an effective (direct) method for solv-
ing large sparse systems of linear equations with embedded network structure,
which appear naturally, e.g. as systems of constraints, in a broad class of non-
homogeneous network flow programming problems.

The ’network nature’ of the regarded system allows keeping data in the
matrix-free form in the computer memory. The formulae, derived within the
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paper, are written in the component (network) form to provide clear approaches
towards developing computational algorithms using efficient data structures for
graph representation [1].

The general idea of the method is based on the following key steps:

• Distinguishing between the network part of the system and the addi-
tional part. The network part of the system represents a network structure
and corresponds to the network part of the system of main constraints of a non-
homogeneous network flow programming problem [1], and is given, traditionally,
by balance equations, written for the nodes of a network. The additional part of
the system corresponds to the additional part of the system of main constraints
and can have a general form. We start the solution by considering the network
part of the system only.

• Introduction of the support of the network for a system. The term ’sup-
port of the network’ (also referred to as network support, or support) is borrowed
from optimization theory [2], [3] and is used here for further compatibility with
applications in problems of non-homogeneous network flow programming. The
actual meaning in this paper is – a set of indices of variables (or, in the network
terms, - a set of arcs) corresponding to columns, which form a basis minor of the
matrix of a system. We study the support for the network part of the system,
finding the correspondence between the columns of a basis minor and a family
of spanning trees.

• Construction of a general solution for the network part of the system.
We compute a basis of a solution space of the corresponding homogeneous system
and interpret the basis vectors as characteristic vectors, entailed by non-support
arcs. A simple approach for finding a partial solution of the (non-homogeneous)
system is provided.

• Decomposition of the system. We perform column decomposition of the
system by separating the variables according to the sets - UT , UC and UN , which
consist of the arcs of the support for the network part of the system, cyclic arcs
and non-support/non-cyclic arcs respectively; and, finally, sequentially express
the unknowns corresponding to the sets UC and UT in terms of the independent
variables corresponding to the set UN .

1.1 General form of the system

Let S = (I, U) be a finite oriented connected network without multiple
arcs and loops, where I is a set of nodes and U is a set of arcs defined on
I×I(|I| <∞, |U | <∞) . Let K (|K| <∞) be a set of different products (types
of flow) transported through the network S. For definiteness, we assume the set
K = {1, . . . , |K|}. Let us denote a connected network corresponding to a certain



Solution of Large Linear Systems with Embedded ... 235

type of flow k ∈ K with Sk = (Ik, Uk), Ik ⊆ I, Uk = {(i, j)k : (i, j) ∈ Ũk}, Ũk ⊆
U - a set of arcs of the network S carrying the flow of type k. Also, we define
sets K(i) = {k ∈ K : i ∈ Ik} and K(i, j) = {k ∈ K : (i, j)k ∈ Uk} of types of
flow transported through a node i ∈ I and an arc (i, j) ∈ U respectively.

Let us introduce a subset U0 of the set U , and letK0(i, j) ⊆ K(i, j), (i, j) ∈
U0 be an arbitrary subset of K(i, j) such that |K0(i, j)| > 1.

Finally, the initial network S = (I, U) may be considered as a union of
|K| networks Sk, combined under additional constraints of a general kind.

Consider the following linear underdetermined system

(1)
∑

j∈I+

i (Uk)

xk
ij −

∑

j∈I−i (Uk)

xk
ji = ak

i , i ∈ Ik, k ∈ K,

(2)
∑

(i,j)∈U

∑

k∈K(i,j)

λ
kp
ij x

k
ij = αp, p = 1, q,

(3)
∑

k∈K0(i,j)

xk
ij = zij , (i, j) ∈ U0,

where I+
i (Uk) = {j ∈ Ik : (i, j)k ∈ Uk} , I−i (Uk) = {j ∈ Ik : (j, i)k ∈ Uk};

ak
i , λ

kp
ij , αp, zij ∈ R - parameters of the system; x = (xk

ij , (i, j)
k ∈ Uk, k ∈ K)-

vector of unknowns.
The matrix of system (1) - (3) has the following block structure:

(4) A =



M

Q

T


 .

Here M is a sparse submatrix with a block-diagonal structure of size∑

k∈K

|Ik|×
∑

k∈K

|Uk| such that each block represents a |Ik|×|Uk| incidence matrix

of the network Sk = (Ik, Uk), k ∈ K, namely, M = M1
⊕
M2

⊕
· · ·

⊕
M|K| ,

where Mk, k = 1, . . . , |K| are blocks of matrix M ; Q is a q×
∑

k∈K

|Uk| submatrix

(dense, in the general case) with elements λkp
ij , (i, j) ∈ U ,k ∈ K(i, j) ,p = 1, q ; T

is a |U0|×
∑

k∈K

|Uk| submatrix consisting of zeros and ones, where all the nonzero

elements appear in columns corresponding to arcs (i, j)k , (i, j) ∈ U0, k ∈ K0(i, j).

We assume that
∑

k∈K

|Ik| + q + |U0| <
∑

k∈K

|Uk|.
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2. Network part of the system

We start the solution of system (1) - (3) by considering the network part
of the system.

Definition 1 We call system (1) the network part of the system (1)-(3).
Systems (2) and (3) are called the additional part of the system (1)-(3).

Before we proceed, let us recall the following necessary and sufficient
condition of consistency for system (1) implied by Kronecker-Capelli theorem:

∑

i∈Ik

ak
i = 0, k ∈ K.

Theorem 1. (Rank theorem) . The rank of the matrix of system (1)

for the network S = (I, U) equals
∑

k∈K

|Ik| − |K|.

P r o o f. Since matrix M of the system (1) has the form

M = M1

⊕
M2

⊕
· · ·

⊕
M|K|,

whereMk is a diagonal block of matrixM, k = 1, . . . , |K| and rankMk = |Ik|−1

[1] then rankM =

|K|∑

k=1

rankMk =
∑

k∈K

(|Ik| − 1) =
∑

k∈K

|Ik| − |K|.

R e m a r k 1 . We assume, without loss of generality, that the rank of

the system (1) - (3) is
∑

k∈K

|Ik| − |K| + q + |U0| , where q + |U0| is a number of

equations in the additional part (2) - (3).

Since the matrix of system (1) has the block-diagonal structure, we split
the solution of the system into |K| solutions of (independent) systems , each
of which corresponds to a separate block, i.e. to a fixed k ∈ K , and has the
following form:

(5)
∑

j∈I+

i (Uk)

xk
ij −

∑

j∈I−i (Uk)

xk
ji = ak

i , i ∈ Ik .
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2.1 Support Criterion

Let us define a support of the network S = (I, U) for system (1).

Definition 2. The support of the network S = (I, U) for system (1) is
a set of arcs UT = {Uk

T ⊆ Uk, k ∈ K} such that the system

(6)
∑

j∈I+

i (Ûk)

xk
ij −

∑

j∈I−i (Ûk)

xk
ji = 0, i ∈ Ik, k ∈ K

has only a trivial solution for Ûk = Uk
T , but has a non-trivial solution for

Ûk = Uk
T , k ∈ K \ k0; Ûk0 = Uk0

T

⋃
(i, j)k0 , (i, j)k0 6∈ Uk0

T , k0 ∈ K.

Theorem 2. (Network Support Criterion). The set

UT = {Uk
T , k ∈ K}

is a support of the network S = (I, U) for system (1) iff for each k ∈ K the set
of arcs Uk

T is a spanning tree for the network Sk = (Ik, Uk).
P r o o f. Follows directly from the proof [3] for the case when |K| = 1

and the block-diagonal structure of the matrix of the system (1).

2.2 Basis of a solution space of a homogeneous system. Char-
acteristic vectors

Before introducing the definition of a characteristic vector, let’s analyze
the structure of a network obtained by appending an arbitrary arc (τ, ρ)k ∈
Uk \ Uk

T , where k ∈ K is fixed, to the support UT .

For a fixed k ∈ K we consider a network Ŝk = (Ik, Uk
T

⋃
(τ, ρ)k), (τ, ρ)k ∈

Uk \ Uk
T , where the set Uk

T is a spanning tree of the network Sk . Appending
an arc (τ, ρ)k ∈ Uk \Uk

T to the tree entails a unique cycle. We denote this cycle
with Lk

τρ. The set Zk = {Lk
τρ, (τ, ρ)

k ∈ Uk \Uk
T } is the fundamental set of cycles

with respect to the spanning of the network Sk [1].
Let us consider a cycle Lk

τρ, entailed by an arc (τ, ρ)k ∈ Uk \ Uk
T . We

define the detour direction within the cycle Lk
τρ corresponding to the arc (τ, ρ)k.

Definition 3. We call an arc (i, j)k ∈ Lk
τρ, where k ∈ K is fixed, a

forward arc of the cycle Lk
τρ, if the direction of the arc (i, j)k is the same as

the direction of the arc (τ, ρ)k within the cycle Lk
τρ. Similarly, we call an arc

(i, j)k ∈ Lk
τρ, where k ∈ K is fixed, a backward arc of the cycle Lk

τρ, if the
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direction of the arc (i, j)k is opposite to the direction of the arc (τ, ρ)k within
the cycle Lk

τρ.

We denote the sign of an arc (i, j)k within a cycle Lk
τρ by sign(i, j)L

k
τρ ,

(7) sign(i, j)L
k
τρ =





1, (i, j)k ∈ Lk+
τρ

−1, (i, j)k ∈ Lk−
τρ ,

0, (i, j)k 6∈ Lk
τρ

where L
k+
τρ and L

k
−

τρ are the sets of forward and backward arcs of the cycle Lk
τρ

with a direction corresponding to the arc (τ, ρ)k.

Let us give a constructive definition of a characteristic vector, entailed
by an arc.

Definition 4. Characteristic vector, entailed by an arc (τ, ρ)k ∈ Uk\Uk
T

with respect to the spanning tree Uk
T , is a vector δk(τ, ρ) = (δk

ij(τ, ρ), (i, j)
k ∈

Uk), where k ∈ K is fixed, constructed according to the following rules:

• Add an arc (τ, ρ)k ∈ Uk \Uk
T , to the set Uk

T , k ∈ K , which is a spanning
tree for the network Sk = (Ik, Uk); and thus create a unique cycle Lk

τρ.

• Let the arc (τ, ρ)k set the detour direction within the cycle Lk
τρ and

δk
τρ(τ, ρ) = 1.

• For cycle’s forward arcs, let δk
ij(τ, ρ) = 1.

• For cycle’s backward arcs, let δk
ij(τ, ρ) = −1.

• Let δk
ij(τ, ρ) = 0, (i, j)k ∈ Uk\Lk

τρ .

For briefness, further in this paper, we will call a characteristic vector
δk(τ, ρ), entailed by an arc (τ, ρ)k, with respect to the spanning tree Uk

T , a char-
acteristic vector δk(τ, ρ), entailed by an arc (τ, ρ)k, or, simply, a characteristic
vector δk(τ, ρ).

The next two lemmas state the essential properties of characteristic vec-
tors.

Lemma 1. A characteristic vector δk(τ, ρ), entailed by an arc
(τ, ρ)k ∈ Uk \Uk

T , where k ∈ K is fixed, is a solution of the homogeneous linear
system (8)

(8)
∑

j∈I+

i (Uk)

xk
ij −

∑

j∈I−i (Uk)

xk
ji = 0, i ∈ Ik.
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P r o o f. Let a support UT = {Uk
T , k ∈ K} be defined. For a fixed

k ∈ K we consider the set Uk
T which is, according to Theorem 2, a spanning

tree for the network Sk, and let Lk
τρ be the unique cycle of the network Ŝk =

(Ik, Uk
T

⋃
(τ, ρ)k), which appears after appending the arc (τ, ρ)k ∈ Uk \ Uk

T to
the set Uk

T .

Consider the vector xk = (xk
ij , (i, j)

k ∈ Uk) of unknowns in system (8).

Let us let xk
ij = 0, (i, j)k ∈ Uk\Lk

τρ. Thus, the system (8) can be reduced
to

(9)
∑

j∈I+

i (Lk
τρ)

xk
ij −

∑

j∈I−i (Lk
τρ)

xk
ji = 0, i ∈ I(Lk

τρ),

where I(Lk
τρ) denotes all nodes in cycle Lk

τρ.

Letting xk
τρ = 1, from the reduced system (9), we can easily define the

values of the remaining unknowns xk
ij , (i, j)

k ∈ Lk
τρ \ (τ, ρ)k:

xk
ij = sign(i, j)L

k
τρ , (i, j)k ∈ Lk

τρ \ (τ, ρ)k.

Algorithmically, after letting xk
τρ = 1, we pass from node τ to node ρ

along the cycle Lk
τρ, consecutively setting the unknowns xk

ij , (i, j)
k ∈ Lk

τρ\(τ, ρ)
k,

to the values of signs of the corresponding arcs within the cycle Lk
τρ.

Note, the constructed solution vector xk satisfies all the rules of Definition
4 of a characteristic vector, entailed by an arc (τ, ρ)k, and hence δk(τ, ρ) = xk

is a solution of the homogeneous linear system (8).

Lemma 2. The set {δk(τ, ρ), (τ, ρ)k ∈ Uk\Uk
T } of characteristic vectors,

where k ∈ K is fixed, forms the basis of a solution space for the homogeneous
system (8).

P r o o f. According to Lemma 1, each characteristic vector satisfies the
homogeneous system (8).

By Theorem 2, for a fixed k ∈ K, the set Uk
T is a spanning tree for the

network Sk = (Ik, Uk), hence |Uk
T | = |Ik|−1. Thus, the number of characteristic

vectors in the set {δk(τ, ρ), (τ, ρ)k ∈ Uk \Uk
T } equals |Uk \Uk

T | = |Uk| − |Ik|+ 1.

Now it suffices to show that all the vectors in the set are linearly inde-
pendent.

Each characteristic vector δk(τ, ρ), entailed by some arc (τ, ρ)k ∈ Uk\Uk
T ,

always has even one component, corresponding to the set Uk \Uk
T , that is equal

to 1. It corresponds to the arc (τ, ρ)k ∈ Uk \ Uk
T that has entailed this vector.
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All the other components, which correspond to arcs Uk \ Lk
τρ, are equal to 0.

This fact implies that any two characteristic vectors, entailed by different arcs,
are linearly independent.

Theorem 3. The general solution of system (5), for a fixed k ∈ K,
can be represented using the following form:

xk
ij =

∑

(τ,ρ)k∈Uk\Uk
T

xk
τρsign(i, j)L

k
τρ +


x̃k

ij −
∑

(τ,ρ)k∈Uk\Uk
T

x̃k
τρsign(i, j)L

k
τρ


 ,

(10)

(i, j)k ∈ Uk
T , xk

τρ ∈ R, (τ, ρ)k ∈ Uk \ Uk
T ,

where x̃k = (x̃k
ij , (i, j)

k ∈ Uk) is any partial solution of the non-homogeneous

system (5); xk
τρ are independent variables corresponding to arcs (τ, ρ)k ∈ Uk\Uk

T .

P r o o f. Let xk = (xk
ij , (i, j)

k ∈ Uk) be a general solution, and

x̃k = (x̃k
ij , (i, j)

k ∈ Uk) - a partial solution, of the system (5). Since, by Lemma

2, the set {δk(τ, ρ), (τ, ρ)k ∈ Uk \ Uk
T } of characteristic vectors forms the basis

of a solution space for the homogeneous system (8), we can write the expression
for xk in the following vector form:

(11) xk =
∑

(τ,ρ)k∈Uk\Uk
T

αk
τρδ

k(τ, ρ) + x̃k,

as a sum of a general solution of the homogeneous system (8) and a partial
solution of the non-homogeneous system (5); αk

τρ ∈ R are coefficients of the
linear combination of characteristic vectors in (11).

Rewriting (11) in the component form we obtain:

(12) xk
ij =

∑

(τ,ρ)k∈Uk\Uk
T

αk
τρδ

k
ij(τ, ρ) + x̃k

ij, (i, j)k ∈ Uk
T ;

(13) xk
τρ = αk

τρ + x̃k
τρ, (τ, ρ)k ∈ Uk\Uk

T .

From equations (13) we find αk
τρ = xk

τρ − x̃k
τρ, (τ, ρ)k ∈ Uk\Uk

T and
substitute into (12). Finally, rewriting components of characteristic vectors
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according to (7), we obtain the expression (10) for the general solution of the
system (5).

R e m a r k 2 . In practice, for construction of a partial solution
x̃k = (x̃k

ij , (i, j)
k ∈ Uk) of the system (5), we a priori assume x̃k

τρ = 0, (τ, ρ)k ∈

Uk\Uk
T and solve the system

∑

j∈I+

i (Uk
T

)

x̃k
ij −

∑

j∈I−i (Uk
T

)

x̃k
ji = ak

i , i ∈ Ik.

Thus, formula (10) gets to the form:

(14) xk
ij =

∑

(τ,ρ)k∈Uk\Uk
T

xk
τρsign(i, j)L

k
τρ + x̃k

ij , (i, j)
k ∈ Uk

T ,

xk
τρ ∈ R, (τ, ρ)k ∈ Uk\Uk

T .

Further, we will use the formula (14).

3 Decomposition of the system

Let UT = {Uk
T , k ∈ K} be a support of the network S for the system

(1). We define a set UC = {Uk
C ⊆ Uk\Uk

T , k ∈ K}, |UC | = q + |U0| of cyclic arcs
by selecting q + |U0| arbitrary arcs from the sets Uk\Uk

T , k ∈ K. We denote
UN = {Uk

N , k ∈ K}, Uk
N = Uk\(Uk

T

⋃
Uk

C), k ∈ K - the set of remaining arcs,
which were not included neither to the support UT , nor to the set of cyclic arcs
UC .

Let us substitute the general solution (14) of the system (5), for each
k ∈ K, into (2):

∑

(i,j)∈U

∑

k∈K(i,j)

λ
kp
ij x

k
ij =

∑

k∈K

∑

(i,j)k∈Uk

λ
kp
ij x

k
ij =

=
∑

k∈K

∑

(i,j)k∈Uk
T

λ
kp
ij x

k
ij +

∑

k∈K

∑

(τ,ρ)k∈Uk\Uk
T

λkp
τρx

k
τρ =

=
∑

k∈K

∑

(i,j)k∈Uk
T

λ
kp
ij




∑

(τ,ρ)k∈Uk\Uk
T

xk
τρsign(i, j)L

k
τρ + x̃k

ij


+

(15) +
∑

k∈K

∑

(τ,ρ)k∈Uk\Uk
T

λkp
τρx

k
τρ = αp, p = 1, q
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We change the summing order in (15):

∑

k∈K

∑

(τ,ρ)k∈Uk\Uk
T

xk
τρ

∑

(i,j)k∈Uk
T

λ
kp
ij sign(i, j)L

k
τρ +

∑

k∈K

∑

(i,j)k∈Uk
T

λ
kp
ij x̃

k
ij+

(16) +
∑

k∈K

∑

(τ,ρ)k∈Uk\Uk
T

λkp
τρx

k
τρ = αp, p = 1, q .

In equations (16) we group the variables, corresponding to the sets Uk\Uk
T ,

k ∈ K:
∑

k∈K

∑

(τ,ρ)k∈Uk\Uk
T

xk
τρ


λkp

τρ +
∑

(i,j)k∈Uk
T

λ
kp
ij sign(i, j)L

k
τρ


 =

(17) = αp −
∑

k∈K

∑

(i,j)k∈Uk
T

λ
kp
ij x̃

k
ij , p = 1, q .

Definition 5. We call the number

(18) Rp(L
k
τρ) =

∑

(i,j)k∈Lk
τρ

λ
kp
ij sign(i, j)L

k
τρ

the determinant of the cycle Lk
τρ, entailed by an arc (τ, ρ)k ∈ Uk\Uk

T , with re-
spect to the equation with the number p of the system (2).

Let us denote

(19) Ap = αp −
∑

k∈K

∑

(i,j)k∈Uk
T

λ
kp
ij x̃

k
ij , p = 1, q .

The equations (17), according to formulae (18), (19), get to the form:

(20)
∑

k∈K

∑

(τ,ρ)k∈Uk\Uk
T

Rp(L
k
τρ)x

k
τρ = Ap, p = 1, q .

In (20) we group the variables, corresponding to the sets Uk
C , k ∈ K:

(21)
∑

k∈K

∑

(τ,ρ)k∈Uk
C

Rp(L
k
τρ)x

k
τρ = Ap −

∑

k∈K

∑

(τ,ρ)k∈Uk
N

Rp(L
k
τρ)x

k
τρ, p = 1, q .
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Now, we apply the similar considerations to the system (3). Note, that

(3) can be regarded as a particular case of the system (2) with λ
kp
ij equal to 0

or 1.
Let us substitute the general solution (14) of the system (5), for each

k ∈ K , into (3):
∑

k∈K0(i,j)

xk
ij =

∑

k∈K0(i,j),

(i,j)k∈Uk
T

xk
ij +

∑

k∈K0(i,j),

(i,j)k∈Uk\Uk
T

xk
ij =

=
∑

k∈K0(i,j),

(i,j)k∈Uk
T




∑

(τ,ρ)k∈Uk\Uk
T

xk
τρsign(i, j)L

k
τρ + x̃k

ij


 +

(22) +
∑

k∈K0(i,j),

(i,j)k∈Uk\Uk
T

xk
ij = zij , (i, j) ∈ U0.

Now, after changing the summing order and grouping the variables, cor-
responding to the sets Uk\Uk

T , k ∈ K0(i, j), (i, j) ∈ U0 in (22), we obtain

(23)
∑

k∈K0(i,j),

(τ,ρ)k∈Uk\Uk
T

xk
τρsign(i, j)L

k
τρ = zij −

∑

k∈K0(i,j),

(i,j)k∈Uk
T

x̃k
ij , (i, j) ∈ U0 .

On this step let us introduce the following notation:

(24)

δij(L
k
τρ) =





sign(i, j)L
k
τρ , k ∈ K0(i, j)

, (i, j) ∈ U0, (τ, ρ)
k ∈ Uk\Uk

T , k ∈ K.

0, k 6∈ K0(i, j)

Thus, equations (23) get to the form

(25)
∑

k∈K

∑

(τ,ρ)k∈Uk\Uk
T

δij(L
k
τρ)x

k
τρ = Aij, (i, j) ∈ U0,

where

(26) Aij = zij −
∑

k∈K0(i,j),

(i,j)k∈Uk
T

x̃k
ij , (i, j) ∈ U0.
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In (25) we group the variables, corresponding to the sets Uk
C , k ∈ K:

∑

k∈K

∑

(τ,ρ)k∈Uk
C

δij(L
k
τρ)x

k
τρ =

(27) = Aij −
∑

k∈K

∑

(τ,ρ)k∈Uk
N

δij(L
k
τρ)x

k
τρ, (i, j) ∈ U0.

Finally, let us rewrite equations (21) and (27) in the matrix form. For
this purpose, we introduce arbitrary numberings of arcs within the sets U0 and
UC . Thus, ξ = ξ(i, j) is a number of an arc (i, j) ∈ U0, ξ ∈ {1, 2, . . . , |U0|}; and
t = t(τ, ρ)k is a number of a cyclic arc (τ, ρ)k ∈ Uk

C , k ∈ K, t ∈ {1, 2, . . . , |UC |}.
In other words, we number the equations of the system (3), or (27), and the
variables, corresponding to the set UC . Note, the numbering of cyclic arcs is
equivalent to the numbering of the set {Lk

τρ, (τ, ρ)
k ∈ Uk

C , k ∈ K} of cycles,

entailed by arcs (τ, ρ)k ∈ Uk
C , with respect to spanning trees Uk

T of the networks
Sk.

Now equations (21) and (27) can be regarded as following:

(28) DxC = β,

where D =
(

D1

D2

)
, D1 = (Rp(L

k
τρ), p = 1, q, t(τ, ρ)k = 1, |UC |) - submatrix of the

size q × |UC |, D2 = (δij(L
k
τρ), ξ(i, j) = 1, |U0|, t(τ, ρ)

k = 1, |UC |) - submatrix of

the size |U0| × |UC |, xC = (xk
τρ, (τ, ρ)

k ∈ Uk
C , k ∈ K) - vector of unknowns with

components ordered according to the numbering t = t(τ, ρ)k.
The right-hand side of (28) has the form:

(29) β =

(
βp, p = 1, q

βq+ξ(i,j), (i, j) ∈ U0

)
,

where βp = Ap −
∑

k∈K

∑

(τ,ρ)k∈Uk
N

Rp(L
k
τρ)x

k
τρ, p = 1, q,

βq+ξ(i,j) = Aij −
∑

k∈K

∑

(τ,ρ)k∈Uk
N

δij(L
k
τρ)x

k
τρ, (i, j) ∈ U0.

From (28), in case of non-singularity of the matrix D, we find the un-
known variables xC , corresponding to the set UC of cyclic arcs:

(30) xC = D−1β .
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R e m a r k 3 . Generally, because of an arbitrary selection of arcs for the
set UC = {Uk

C , k ∈ K}, non-singularity of the matrixD is not guaranteed. In the
case when det D = 0 one should re-select arcs into the set UC and re-compute
D,β for the system (28).

Let D−1 = (νl,s; l, s = 1, |UC |). We rewrite (30) in the component form:

xk
τρ =

q∑

p=1

νt,pβp +
∑

(i,j)∈U0

νt,q+ξ(i,j)βq+ξ(i,j), t = t(τ, ρ)k, (τ, ρ)k ∈ Uk
C , k ∈ K.

Thus, we have determined all the unknown variables xk = (xk
ij , (i, j)

k ∈

Uk, k ∈ K) of the system (1) - (3):

xk
τρ =

q∑

p=1

νt,pβp +
∑

(i,j)∈U0

νt,q+ξ(i,j)βq+ξ(i,j),

(31) t = t(τ, ρ)k, (τ, ρ)k ∈ Uk
C , k ∈ K,

(32) xk
ij =

∑

(τ,ρ)k∈Uk
N

xk
τρsign(i, j)L

k
τρ + ψk

ij + x̃k
ij , (i, j)k ∈ Uk

T , k ∈ K,

xk
τρ ∈ R , (τ, ρ)k ∈ Uk

N ,

where ψk
ij =

∑

(τ,ρ)k∈Uk
C

xk
τρsign(i, j)L

k
τρ .

Note, the components of the vector x̃k = (x̃k
ij, (i, j)

k ∈ Uk) of a
partial solution of the system (5) are constructed according to the rules in the
Remark 2.

Before we start with a simple example, let us briefly discuss the most
important, in our opinion, aspects of the method. Although the strict estimate
of complexity was left beyond the scope of the paper, one can notice that the
described approach, if implemented on proper data structures, leads to efficient
algorithm: the reasonable part of computations is done on small subsets of arcs,
e.g. on ’isolated’ cycles - (7), (18), or spanning trees - (19), (26). The use of
the embedded network structure allows performing decomposition of the system
and, finally, inverting the matrix D (28) of a size much smaller than that of the
initial system (1)-(3). Moreover, the fact that the same results were obtained
for each type of flow k ∈ K, e.g. Theorem 2, Lemmas 1 and 2, formulae (14),
makes the method ready for implementation in parallel environment.
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However, the power of the approach is appreciated in the context of large
problems of non-homogeneous network flow programming with (1)-(3) being
the system of main constraints, where the presented ideas provide the uniform
technique for computing essential quantities: increment of an objective function,
feasible directions, pseudo-flow, etc.

Currently the authors work on the application of the obtained results
for derivation of an optimality criterion for a broad class of non-homogeneous
network flow programming problems.

4. Example

Let us consider the example (1a) - (3a) of the problem (1) - (3) for the
network S = (I, U), I = {1, 2, 3, 4, 5}, U = {(1, 2), (1, 3), (2, 3), (2, 4), (3, 4),
(4, 5), (5, 3)}. Let K = {1, 2, 3} be the set of types of flow, Ũ1 =
{(1, 2), (1, 3), (2, 3)}, Ũ2 = Ũ3 = {(2, 3), (2, 4), (3, 4), (4, 5), (5, 3)} - the sets of
arcs carrying the flow of type k, k ∈ K. We construct the networks Sk =
(Ik, Uk), k ∈ K (Figure 1).

x1
12 + x1

13 = 4
x1

23 − x1
12 = 6

−x1
13 − x1

23 = −10

(1a)

x2
23 + x2

24 = 5
x2

34 − x2
23 − x2

53 = −5
x2

45 − x2
24 − x2

34 = 1
x2

53 − x2
45 = −1

x3
23 + x3

24 = 5
x3

34 − x3
23 − x3

53 = −7
x3

45 − x3
24 − x3

34 = 1
x3

53 − x3
45 = 1

(2a)

2x1
12 + 3x1

13 + x1
23 + 4x2

23 + 2x3
23 + 3x2

24 − 4x3
24 + 2x2

34 + x3
34−

x2
45 + 7x3

45 + x2
53 + 2x3

53 = 69
x1

12 + 2x1
13 + 2x1

23 + 5x2
23 + 3x3

23 − x2
24 − x3

24 + x2
34 + x3

34−
2x2

45 + 3x3
45 + 2x2

53 − x3
53 = 58

(3a) x2
24 + x3

24 = 1
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1

2

3

4

5

Figure 1: Union of networks Sk = (Ik, Uk), k ∈ K = {1, 2, 3}

We choose a support of the network S = (I, U) for the system (1a). By
Theorem 2 (Network Support Criterion), we build spanning trees
Uk

T , k ∈ K = {1, 2, 3}: U1
T = {(1, 2)1, (1, 3)1}, U2

T = {(2, 3)2, (2, 4)2, (4, 5)2},
U3

T = {(2, 4)3, (3, 4)3, (4, 5)3}.

Now, we compute the set {δk(τ, ρ), (τ, ρ)k ∈ Uk \ Uk
T } of characteristic

vectors with respect to the constructed spanning tree Uk
T , k ∈ K = {1, 2, 3}.

Table 1 The set of characteristic vectors with respect to the spanning
tree U1

T

(i, j)1 (1, 2)1 (1, 3)1 (2, 3)1

δk
ij(τ, ρ) = δ1ij(2, 3) 1 −1 1
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Table 2 The set of characteristic vectors with respect to the spanning
tree U2

T

(i, j)2 (2, 3)2 (2, 4)2 (4, 5)2 (3, 4)2 (5, 3)2

δk
ij(τ, ρ) = δ2ij(3, 4) 1 −1 0 1 0

δk
ij(τ, ρ) = δ2ij(5, 3) −1 1 1 0 1

Table 3 The set of characteristic vectors with respect to the spanning
tree U3

T

(i, j)3 (2, 4)3 (3, 4)3 (4, 5)3 (2, 3)3 (5, 3)3

δk
ij(τ, ρ) = δ3ij(2, 3) −1 1 0 1 0

δk
ij(τ, ρ) = δ3ij(5, 3) 0 1 1 0 1

Let us compute the partial solution of the system (1a) for each k ∈
K = {1, 2, 3} according to the Remark 2: x̃1 = (x̃1

12, x̃
1
13, x̃

1
23)

T = (−6, 10, 0)T ,
x̃2 = (x̃2

23, x̃
2
24, x̃

2
45, x̃

2
34, x̃

2
53)

T = (5, 0, 1, 0, 0)T , x̃3 = (x̃3
24, x̃

3
34, x̃

3
45, x̃

3
23, x̃

3
53)

T =
(5,−7,−1, 0, 0)T .

We form the set UC =

3⋃

k=1

Uk
C = {(2, 3)1, (3, 4)2, (2, 3)3} of cyclic arcs.

The remaining arcs will be included into the set UN =

3⋃

k=1

Uk
N = {(5, 3)2, (5, 3)3}.

Structures, representing the union of the sets Uk
T

⋃
Uk

C , k ∈ K = {1, 2, 3} are
shown on Figure 2.

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

Figure 2: Sets Uk
T

⋃
Uk

C for networks Sk, k ∈ K = {1, 2, 3}
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Using formula (18) we compute the determinants of the cycles Lk
τρ, en-

tailed by the arcs (τ, ρ)k ∈ Uk\Uk
T , for each k ∈ K = {1, 2, 3}, with respect to

the equation (2a) with the number p = 1, 2 (Table 4).

Table 4 Determinants of the cycles Lk
τρ, entailed by the arcs (τ, ρ)k ∈

Uk\Uk
T , k ∈ K = {1, 2, 3}

(τ, ρ)k (2, 3)1 (3, 4)2 (5, 3)2 (2, 3)3 (5, 3)3

R1(L
k
τρ) 0 3 −1 7 10

R2(L
k
τρ) 1 7 −6 5 3

Now, let us compute the values δij(L
k
τρ), (i, j) ∈ U0, (τ, ρ)

k ∈ Uk \Uk
T , k ∈

K = {1, 2, 3} according to the formula (24) for the example (1a)-(3a), U0 =
{(2, 4)}, K0(2, 4) = {2, 3} (Table 5).

Table 5 The values δij(L
k
τρ), (i, j) ∈ U0, (τ, ρ)

k ∈ Uk \ Uk
T , k ∈ K =

{1, 2, 3}

(τ, ρ)k (2, 3)1 (3, 4)2 (5, 3)2 (2, 3)3 (5, 3)3

δ24(L
k
τρ) 0 −1 1 −1 0

Before assembling the matrix D of the system (28), let’s number the arcs
of the set : UC = {(2, 3)1, (3, 4)2, (2, 3)3} : t(2, 3)1 = 1, t(3, 4)2 = 2, t(2, 3)3 = 3.
The numbering within the set U0 = {(2, 4)} is trivial: ξ(2, 4) = 1.

First, we construct the matrix D1 = (Rp(L
k
τρ), p = 1, 2, t(τ, ρ)k = 1, 3)

of the determinants of the cycles Lk
τρ , entailed by the arcs (τ, ρ)k ∈ UC , by

selecting the corresponding columns from the Table 4:

D1 =

(
0 3 7
1 7 5

)
.

Similarly, by selecting the corresponding columns from the Table 5, we
form the matrix D2 = (δ24(L

k
τρ), ξ(2, 4) = 1, t(τ, ρ)k = 1, 3):

D2 = (0 − 1 − 1).

Thus, joining D1 and D2 together, we obtain the matrix of the system
(28):

D =




0 3 7
1 7 5
0 −1 −1


 ,detD 6= 0.
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Let us compute the vector β in the right hand side of (28) using formulae
(29):

β1 = A1 −R1(L
2
53)x

2
53 −R1(L

3
53)x

3
53,

β2 = A2 −R2(L
2
53)x

2
53 −R2(L

3
53)x

3
53,

β3 = A24 − δ24(L
2
53)x

2
53 − δ24(L

3
53)x

3
53.

The values Rp(L
2
53), Rp(L

3
53), p = 1, 2 of the determinants of the cycles

Lk
τρ, entailed by the arcs (τ, ρ)k ∈ UN , as well as the values δ24(L

2
53) and δ24(L

3
53),

are already computed and stored within the Table 4 and Table 5. The numbers
A1, A2, A24 are evaluated using the formulae (19) and (26):

A1 = α1−λ
11
12x̃

1
12−λ

11
13x̃

1
13−λ

21
23x̃

2
23−λ

21
24x̃

2
24−λ

21
45x̃

2
45−λ

31
24x̃

3
24−λ

31
34x̃

3
34−λ

31
45x̃

3
45 = 66,

A2 = α2−λ
12
12x̃

1
12−λ

12
13x̃

1
13−λ

22
23x̃

2
23−λ

22
24x̃

2
24−λ

22
45x̃

2
45−λ

32
24x̃

3
24−λ

32
34x̃

3
34−λ

32
45x̃

3
45 = 36,

A24 = z24 − x̃2
24 − x̃3

24 = −4.

Thus, we have defined the vector β =




66 + x2
53 − 10x3

53

36 + 6x2
53 − 3x3

53

−4 − x2
53


 .

Since the matrix D turned out to be non-singular, we can use formula
(30) for finding the solution xC = (xk

τρ, (τ, ρ)
k ∈ Uk

C , k ∈ K) of the system (28):




x1
23

x2
34

x3
23


 =




1

2
1

17

2

−
1

4
0 −

7

4
1

4
0

3

4







66 + x2
53 − 10x3

53

36 + 6x2
53 − 3x3

53

−4 − x2
53


 .

Finally, using formulae (31) - (32), we can define the solution of the
system (1a)-(3a) with x2

53, x
3
53, being independent variables:

x1
23 = 35 − 2x2

53 − 8x3
53, x

2
34 = −

19

2
+

3

2
x2

53 +
5

2
x3

53, x
3
23 =

27

2
−

1

2
x2

53 −
5

2
x3

53,

x1
12 = 29 − 2x2

53 − 8x3
53,

x1
13 = −25 + 2x2

53 + 8x3
53,

x2
23 = −

9

2
+

1

2
x2

53 +
5

2
x3

53,
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x2
24 =

19

2
−

1

2
x2

53 −
5

2
x3

53,

x2
45 = x2

53 + 1,

x3
24 = −

17

2
+

1

2
x2

53 +
5

2
x3

53,

x3
34 =

13

2
−

1

2
x2

53 −
3

2
x3

53,

x3
45 = x3

53 − 1,

x2
53, x

3
53 ∈ R.
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