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Abstract
We consider algorithms for solving linear systems with embedded net-
work structure. We investigate problems of network optimization based
on research theoretic-graph specificity for the structure of the support
and for properties of the base of a solution space.

1 Introduction

Let G = {I,U} be a finite oriented graph without multiple arcs and loops.
Consider the linear underdetermined system

Z Tyj, — Z -T-J':t={a“" ier\r (1)

jert ) JEI7(U) v -signlil, i€l

Z Moz =uay for p= 1,9 (2)
(i,7)EU

Key words and phrases: underdetermined linear systems, embedded network structures,
network optimization
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192 Algorithms of Solving Large Sparse Underdetermined Linear Systems...

1, 2"
signl|i| = ! s rer
signli] {—1, ie I\ I" =
FU)={:G,4) e}, I7(U)={j:0i)eU}
Restrictions (1) and (2) can be written as a block matrix in the following form:
[ M R
=g o]

Here submatrix M has size |I| x |U| and consists of elements 1 and —1 for
every arc (4, 7) with other elements being zeros. Submatrix R has size |I| x |I*|
consisting of signums of nodes. It has one nonzero element per column equal
to signli] to with the others equal to zero. Q is the submatrix of size ¢ x |U)|
with additional restrictions on the variables z;;, for (4,7) € U.

Theorem 1. The rank of the matriz of System (1) for a connectivity graph
G = {I,U} is equal to |I|.

Theorem 2. The value of any minor of the matriz of System (1) is equal to
0, 1, or —1.

Definition 1. Consider any cyele L = (I, UL) of the graph. Then construct
a vector according to the following rules:

e Choose an arbitrary arc from the cycle. Let it be an arc (1,p) € Up. This
sets the cycle detour direction and érp, = 1.

e For eycle’s forward arcs, let &;; = 1.
o For cycle’s backward arcs, let 6;; = —1.

e For nodes form the set I* that form part of the cycle, let 6; = 0, for
ie Iy,

e For arcs that have not formed any part of the cycle, let 6;; = 0, for
(4,7) e U\ Ug.

e For nodes from the set I* not included into the cycle, let §; = 0, for
ielI” \ LT

The wvector constructed according to the described rules is called the charac-
teristic vector of the eycle.

Obviously, the characteristic vector depends on the chosen direction.

Definition 2. Consider any chain C = (I¢,Uc) of the graph connecting nodes
u,v € I". The vector constructed according to the following rules is the char-
acteristic veetor of the chain with the direction according to a node:
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e Let node u be the beginning of the chain and v be fhe end. Thus, we define
the direction of the chain.

o For the node from which the chain begins, let 6, = 1.
e [or the last node, let

g signfv] - 645, (v,7) € Ue
“ 7 | —signfv] 65, (4,v) € Ue

e For forward arcs of the chain that correspond to the direction from u to
v taken, let &;; = sign[u].

o For backward arcs of the chain, let &;; = —sign[u].

e For nodesi € Io NI*\ {u,v}, let §; = 0.

e For ares that do not belong to the chain, let 6;; = 0, for (1,7) € U\ Ug.

e For nodesi € I* \ I, let §; = (0.

Definition 3. Consider any chain C = (Ig,Ug) of the graph connecting two
nodes u,v € I'*. The vector constructed according to the following rules is the
characteristic vector of the chain with the direction according to an
arc’

Choose any arc (7, p) € Ue that defines the direction of the chain.

For the chain’s forward arcs, let 6;; = 1.

e For the chain's backward arcs, let 6;; = —1.

L ]

For nodes u and v, let,

o sign[u] - 6y, (u,7) € Ue
“ | signu] - Gju,  (Gyw) € Uo

" signv] - 8y5, (v,4) € Uc
“ | —signfv] - b0, (4,v) € Ue

e For nodesi € Ic(I* \ {u,v}, let §; = 0.
e For the arcs that do not belong to the chain, let 6;; =0, for (2,7) € U\Uc.
e For nodesi € I*\ I, let 6; = 0.
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Lemma 1. The characteristic vector of a cycle, the characteristic vector of a
chain with the direction according to a node;, and the characteristic vector of a
chain with the direction according to an are satisfy the system

JEIF (W) el () @4 - signlil,

Theorem 3. Any solution of System (3) is a linear combination of character-
istic vectors.

Proof Let x = (z;5,(i,J) € U; 4,1 € I*) be a solution of System (3). We
show that vector = can be represented as the sum of the cyclic vector multiplied
by some coefficient and some other solution y = (yi;,(4,7) € U; yi, b € I')
of System (3), which has a smaller number of nonzero components.

Jonsider graph R = {I,T, S} where T is the set of the arcs that correspond
to nonzero components of the vector = and S is the set of the nodes that
correspond to nonzero components of the vector z, §= {i: v € I'*,z; # 0}.

We find the subsets of the graph R with the following structural elements:
a cycle or a chain between two nodes from the set S.

e At least one cycle exists in the graph R. Then we choose any one of them
L = {I;,U} and compare it to the characteristic vector that corresponds
to the cycle 6 = (85, (2,7) € U; 6,1 € I*). Let (d0,50) € Ur be any of
the cycle's arcs. Without commonness limitations, it can be considered
a forward arc of the cycle. We represent components of the vector z as

Ty = :rf,;ojuﬁij + :t',‘;.,.-,(i, j) eu (4)
Ti = Zigjodi + 25, i er”

where the vector =’ = (z};,(i,5) € U; x},i € I'), where z; = z;j —
Tigjo0is, for (4,§) € U, and z§ = zi — x4y4,6i, for i € I*. 1t also appears to
be a solution of System (3) and contains at least one nonzero component
less. Thus, we have reduced the number of elements of the set 7.

e A chain C = {I¢,Uc} that connects nodes 4;,ip € S exists in the graph
R. We compare it to the characteristic vector with the direction accord-
ing to an arc. Let (ip,jo) € Ug be any of the chain’s arcs. Without
commonness limitations, it can be considered forward. We represent vec-
tor z, the solution of System (3), as (4). Obviously, vector 2’ also appears
to be a solution of System (3) and it has at least one nonzero component
less. Thus, we have reduced the set T and broken the chain by divid-
ing one of its coherence components into two: i; belongs to one of them
and 45 to the other. We then apply this process to the vector z' and all
successive vectors constructed according to the rules in (4) while some
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cycles or chains with ares from the set S exist in the graph R. During
each step, one component is removed from the graph R.

We prove that if no chains or no eyeles exist in the graph R then the system

U‘ ;-‘, e I \ S "
PBEESEEDD )mji- {-1.:1‘sign['r"-], ies ”

JEL(T) JEIT (T
has only the trivial solution.

Let graph R be consisting of s coherence components. Then System (5)
splits into s independent systeins.

Consider any coherence component RF = {I(T*),T*} and S* = S I(T*).
It has no cycles, so the set T* has a tree structure and therefore |T%| = |[(T*)|~
1. Since graph R* has no chain of a considered type, we have |S*| < 1.

If |S¥| = 0 then there is one equation more than the number of variables.
Since A* is the block of the matrix of System (5) for the mentioned coherence
component that corresponds to the incidence matrix of the tree T*, for which we
have rank(A*) = |T*|, the corresponding subsystem has only a trivial solution.
If |S%| = 1, then A* is the incidence matrix of the tree T* plus one column with
one nonzero element (the signum of the node iy, is S¥ = {ix}). In this case,
rank(A¥) = |T%| 4 1, which coincides with the dimensions of A*, and therefore
the corresponding subsystem has only a trivial solution.

Thus, we have split the solution x of System (5) until we obtain the next
vector ' = (), and, therefore, we have a decomposition of the vector o as a linear
combination of characteristic vectors. A constructive method of representation
of the vector = as a linear combination of characteristic vectors is completely
described. C]

Definition 4. We call an aggregate of sets R = {UR,IR} Ur C U, and
I}, C I* the support of the graph G for the System (1) if for B= {U, I"} U=
Ug, I* = I}, the system

ieI\I*

> a- ¥ { 4! ©)
2 ; e I*

JEIF (D) JeI7 (D) @i - signlil,

has only a trivial solution, but has a nontrivial solution for any of the following
sel aggregatjons:

{é:{} i U=URU(’~":O:jG); for (30, jo) _EU\UR_ and,f":[ﬁ
R={U,

{U, I'}, U=Ugp, I =I;|Jlio}, forige I\ I
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For some subset of arches [J; C U, we introduce the set of incidental nodes
I(Ul) = {1 el: (1,_}) elh v (j,?;) = U]}

We construct a forest from s the trees TF = {I(UL), Uk}, s < |T*|, so that
every tree has exactly one node ug € I*, for k = 1,5, and |J;, I(U}) = 1. We
form the sets

8 5

Ur=\JUf,  Iip=|J{m}
k1 k1

Theorem 4 (Network Criterion of Support). An aggregate of sets R =

{Ur, I3}, Ur C U, and I, C I* is the support of the graph G for System (1)

if and only if the following conditions can be carried out:

e Each coherence component T* = {I(U%), UL}, for k =13, is a tree.

o I(Up=y UR) = Uiy 1(UF) =1
o |I}| =1, where If = IfNI(U%), for k=T.s.

After the support R = {Ug, I} of System (1) is chosen, we determine
what structures can be obtained after adding one nonsupporting element to
the support.

Definition 5. The characteristic vector entailed by an arc (7, p) € U\Ug
is the vector constructed according to the following rules:

o If the set Ug|J{(7,p)} has a cycle L = {{;, U}, then the entailed char-
acteristic vector is the characteristic vector of that cycle, and the arc
(7, p) is chosen to define the detour direction of the cycle.

o If the set UrlJ(r,p) has a chain C = {I¢,Uc} that connects nodes
u,v € If, then the entailed characteristic vector is the characteristic
vector of that chain, and the are that defines the detour direction is
chosen to be (1, p).

Definition 6. The characteristic vector entailed by a node vy € [*\ I},
is the characteristic vector of the chain that connects nodes v and v € I'y with
node v being chosen as the beginning of the chain.

Theorem 5. Any solution of the homogeneous System (1) may be uniquely
represented as a linear combination of characteristic vectors entailed by the
nonsupporting for System (1) components of the graph G = {I.U}.

Proof We have to prove that the aggregate of entailed characteristic vectors
make up the basis of the space of solutions of the System (1).

The fact that each characteristic vectar satisfies System (1) comes from
Lemma 1.
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Let a support of the graph R = {Ug, I} of the graph G for the System (1)
be consisting of s coherence components, then the number of nonsupporting
arches equals |/ \Ug| = |U|—=(|I| —s) and the number of nonsupporting nodes
equals |[I* \ Ig| = |I*| — s. We have

[U\Ug| + [I* \ Ig| = |U| = (1| = 8) + |[I*| = s = |[U| = |I| + |I*]|

Each entailed characteristic vector always has one and only one nonsup-
porting component that equals one. It corresponds to the arc or the node that
has entailed this vector. All the other components of the characteristic vector
are equal to zero. This means that any two different entailed characteristic
vectors are linearly independent.

Thus, the aggregate of entailed characteristic vectors is a basis of the space
of solutions. Therefore, any of the solutions may be uniquely represented as
their linear combination., O

We choose a support of the network R = {Ug,I}} of the network G for
System (1). It consists of the trees T* = {I(U%),U%}, for k = 1 s, where
each tree has the only one node ux € I(U£) N I We find characteristic
vectors-columns 6(7, p) = (5;:?-’“, (i,7) €U; 6;°,i € I*), entailed by nonsup-
porting arcs (7, p) € U \ Ug, and 6(v) = (67,,(i,4) € U; 6],i € I"*), entailed
by nonsupporting nodes v € I* \ If,.

Theorem 6. The general solution of the System (1) may be uniquely repre-
sented using the following look:

= Z 7:796;‘9 + Z .1:762; + T, for (i,5) € Ug
() EU\UR yEI*\IR
(7)
Ti= Y. @6+ Y my6] +F,  for i€IpnI(UE) andk=Ts
(r.p)€U\UR yel*\E
(8)

where ¥ = (Ty,(1,7) € U, T, € I*) is a partial solution of the inhomoge-
neous system.

Proof We choose a supporting set R = {Ug, I} for the graph ¢’ = {I,U}
for the System (1) and find the general solution of System (1). We consider it

to be the sum of the general solution of the homogeneous system and a partial
solution of the inhomogeneous system.

Let y = (yi5, (4, 7) € U;  yw, k € I™) be any of the solufions of the homoge-
neous System (1), We consider vector

Y=y— Y, wbmp)— D 387

(T.p)EUNUR YEI"\IR
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According to Lemma 1, the characteristic vector of the chain and characteristic
vector of the cycle are the solutions of the homogeneous System (1). Moreover,
y is also a solution of the homogeneous system and therefore their linear com-
bination also satisfies System (1). And, furthermore, vector 3 is constructed
in such a way that y;, = 0, for (i,j) € U\ Ug, and 3/, = 0,k € I" \ I}. In
other words, all nonbasis components of 3’ are equal to zero and therefore 3
satisfies the following system:

0, 1€\ Ix
Z 3= Z = {r- -signfi], 1€ I“\ ’
JEIF (UR) JEIT (UR) (i AN

However, according to the support definition such a system has only a trivial
solution. Consequently, ¥’ = 0 and the general solution of the homogeneous
System (1) has the following look:

Y= Z y‘rpﬁ('ra »"’-) -t Z y-y‘s(’)()

(rp)EUNUR YEI*NIR

We have found the general solution of the homogeneous System (1), We write
down the general solution of System (1) in network form.

Yij = Z Yrpbis" + Z Yybfor  (4,7) € Ug

(r.P)EUNUR YEI*\IR (9)
Yi = Z Yrp0; * + Z Y07 s for ielg

(rp)EUNUR wel*\Ig

The general solution of the inhomogeneous System (1) is the swn of the
general solution of the homogeneous system and a partial solution of the inho-
mogeneous system. O

2 Support of the Graph

Let R = {Ug, g} be a support of the graph G = {I,U} for System (1). In
arbitrary order, we choose sets W = {Uw Iy }, [W| = q,Uw C U \ Ug, and
I, C I\ I,

By substituting the general solution of System (1), which has the form

(T)-(8), into the system of linear equations (2), we obtain:

P TP : -~
Z(?’-,j)eUa }‘i.'i Z(T-P)GU\UR ‘T"'Pﬁf.?' + ZWEI'\IE Ty 537‘ o Iij] N Z(‘r'-._?')EUw ‘}‘I;?"T*-i"

p —
+ Xy eu\(Uwuug) My Tii = dp
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We change the summing order:

Z(T,p)EU\UR Trp Zp(ir,j)eun )‘p o+ Dovere\ 13, Ty Z(t‘J)EUR AL 60
+ 2 (1.5)eun MsTis + Z(T.P)EUW AL prp + 2 (r,p)eUN\(UwUUR) ApTrp = Op,

"
z(1'.»0):514’\0":: Trp Z:(i.j)ebnwf ’\p ‘5 b A'ﬂ'p} + qul-\r Ty Z(l J)EUR ’\uﬁfg
+ X g)eun MyTis = O
Definition 7. The number
= Y AP+, (10)
(1|JJGUR

15 the determinant of the structure entailed by the are (1,p) € U\ Ugr
relatively to restriction (2) with the number p.

Definition 8. The number
= 3 AR6L (11)
(i,7)EUR
is the determinant of the structure entailed by the node v € I* \ I},

relatively to restriction (2) with the number p.

We introduce the designations:
Y AnEy (12)
(i7)EUR
Then System (2) takes the form
Z A2, z.p + Z Az, = AP, for p=T,q (13)
(r.p)EUNUR YEI\I
In System (13), we separate variables that correspond to W and then we obtain
Yo Azt Y AMoy=A— Y Az,— Y APz, (14)
(mp)EUw vELy (r,p)EU\(UwUUR) YEI"\(I},VI})
for"p = T,q. In the matrix of System (14), it has the form
D.’BW = ﬁ (15)

where matrix D consists of the determinants of the structures entailed by
the components of the set W, zw = (zi;,(1,j) € Uw; =;,i € I}y), for g =

(Bpyp=T1,q)
ﬁp = A" - Z A.’,.’pn':.,p p=: Z Agg;,v

(TP)EUN(UwUUR) yeI*\(I,Ulg)

forp=T,q.
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Definition 9. We call the support of the graph G for Systems (1) (2) such an
aggregate of sets K = {Uy, I} } that given K = {U,I*},U = Uy, and I* = I},

the system

0, ieI\I*
Z T Z it = {:m -signli], iel*

Fer () Jer; (U)

Z Njmij =0, for p=T,q
(i.3)E(0)

(16)

has only a trivial solution. Moreover, it has a nontrivial solution for any of the
following aggregations of sets:

K={U, Y U=Ux|Jlodo),  for (io,jo) € U \Ux and I* = I%

K={UTI}, U=Ug, I'=I;|J{io} forig € I* \ I
Theorem 7 (Network Support Criterion). The aggregation of sets K =
{Uk, I} } is a support of the network G = {I,U} for System (1) (£) if and
only if

o the aggregation of sets K = {Uk, I} may be divided into two aggre-
gations: R = {Ug, I3} and W = {Uw, L}y }, such as Up|JUw = Uk,
UeNUw =0, IxUIL} =1k, 6r =0, and the set R is a support of
the network G = {I,U} for System (1);

o |W| = gq, where q is the number of equations in System (2);

e matriz D, which consists of determinants of the structures entailed by the
arcs and nodes of the aggregation W, is not degeneraied.

3 Theoretical-Graphical Properties

We now investigate theoretical-graphical properties of the structure of the sup-
port of the network G = {I,U?} for Systems (1)-(2). According to Theorem 7,
the supporting set aggregate K = {Uk, I } includes the support R = {Ug, I}}
of the network G for System (1). Supporting elements that correspond to the
agpregate R make up a forest of trees that covers all the nodes of the set I,
and each tree of the forest has exactly one node from the set /. Adding each
additional element from W = {Uw,I}};} to the elements from R = {Ug, I},},
we made a cycle or a chain in the set K = {Uk, I} }.

We write the general solution of Systems (1)-(2) in matrix form. We des-
ignate N = {Upn, I} }, Uy = U\ Uk, and I = I* \ I}, to be components of
the nonsupport of the network G = {I,U} for Systems (1)-(2).
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For any set Z = {Uz,I3},Uz C U, and I; C I*, we introduce a vector

tz = (%i,(1,7) € Uz; wiyi € I7). Relations (7) (8) in the matrix have the
following form

TR = Sw.'rw + SNTN — b

where in matrix Sz,Z € {W,N} consists of columns of two types Sz =
(br(T,p), (1,p) € Uz;6r(7),7 € I%). Here each column can be written as:

Sr(r,p) = (81F.(i,5) € Up; & iely)

br(y) = (0].(.0) € Uni 6.0 € I)

;’; = (“E;g-j,(z‘,j)GU; :‘:‘g EIE)

s = —sign(i,j) - BUP; - Tiepinp, ks for (i,§) € Ur

b; = signli] - ZJEI(U.]’E)\P aj, forie LN I(U{f-) and k=1, s

According to (15), Dxw = . Therefore, we have
rw =D
Now we have obtained the general solution of Systems (1) (2).
zw =D"'p
tr=SwD '8+ SnrN+b
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